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Abstract

This paper describes an investigation of the statistical characteristics of self-excited and noise-driven
pressure oscillations in a premixed combustor. This work was motivated by observations that certain
characteristics of these oscillations appear random and cannot be entirely characterized within a
deterministic framework (e.g., spontaneous, noise-induced transitions of the combustor from stable to
unstable operation or cycle-to-cycle variations in the oscillating pressure). In an effort to elucidate these
stochastic elements, we performed an analysis of cycle-to-cycle variations in combustor pressure whose
results are described in this paper. Data obtained from our combustor shows that the probability density
function of the amplitude of these oscillations transitions from a Rayleigh to a Gaussian-type distribution
as the combustor moves from stable to unstable operation. These data also show that the instability phase
is nearly uniformly distributed; i.e., there is no phase value with maximum probability of occurrence. We
also describe a theoretical analysis of the statistical features of a non-linear combustor model that is forced
by random noise. Solutions of this model are presented and shown to be in agreement with measured data.
The good agreement between the predictions and measured data suggest that the analysis presented in this
paper provides a useful framework for interpreting many other apparently random features of combustor
stability characteristics; for example, cyclic variability, ‘‘fuzziness’’ in stability boundaries, or noise-induced
transitions.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This paper describes a study of the statistical features of pressure oscillations in a premixed
combustor. These oscillations are driven by interactions between unsteady flow and heat release
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processes in the combustor, and often lead to detrimental, large amplitude oscillations of the
combustor’s flow fields. To prevent the onset of these instabilities or, at least, minimize their
detrimental effects (e.g., through active control), an understanding of the processes that control
these instabilities is needed. This requires an understanding of the processes that: (1) amplify (i.e.,
destabilize) inherent disturbances in the system, (2) control the transient behavior of the
disturbances in the combustor (e.g., during active control, or as the combustor transitions from
stable to unstable operation), and (3) cause the amplitude of the unsteady motions to saturate into
a limit cycle.
Although far from complete, current understanding of these processes in premixed combustors

has significantly improved as a result of extensive experimental (e.g., Refs. [1–4]) and theoretical
(e.g., Refs. [4–6]) investigations. For example, there is reasonable agreement between experimental
[2,3] and theoretical [4] studies of the key parameters that control their stability characteristics,
suggesting that the dominant linear processes responsible for initiating these instabilities are
understood. Furthermore, significant improvements in understanding of the non-linear behavior
of these systems through perturbation and dynamical systems analyses have provided a rational
framework for characterizing their inherently non-linear oscillatory behavior (e.g., stability
boundary hysteresis, mode selection, limit cycles) [6–11].
While many of the linear and non-linear features of these oscillations have been analyzed

and interpreted within a deterministic framework, their stochastic characteristics have
received considerably less attention. Yet, extensive analysis of measured data [4] suggests
that these oscillations have random features that cannot be characterized within an
entirely deterministic framework. For example, the amplitude and phase of the limit cycle
oscillations vary from cycle to cycle in a seemingly random manner. Also, the parameter values
defining the combustor stability boundaries vary somewhat from test to test (e.g., on the order of
five percent in our combustor). Such variability may be significant in modern high-performance
combustion systems that must often operate near stability boundaries in order to minimize
pollutant emissions [1].
These stochastic characteristics are likely due to the fact that combustion instabilities occur in a

very ‘‘noisy’’, turbulent flow environment that can, in some cases, cause qualitative changes in the
combustor’s dynamics. Theoretical analyses by Culick et al. [8], Burnley [12] and Clavin et al. [13]
have suggested that, because of the presence of this background noise, the instability
characteristics (e.g., the instability amplitude) are random variables. Thus, it is more appropriate
to characterize the instability characteristics by their statistical characteristics (e.g., their
probability density function) than by a single deterministic quantity.
These theoretical analyses and experimental observations of apparently stochastic features in

measured data [4] suggested that additional insight into the characteristics of combustion
instabilities could be obtained by statistical analysis of these features. As such, we performed an
analysis of the statistical characteristics of the cycle-to-cycle variability of the amplitude and phase
of the combustor pressure that is described below. Specifically, the next section presents typical
combustor pressure data and analyzes the probability density functions (PDFs) of the pressure
amplitude and phase. These results are then compared with the statistical characteristics of the
amplitude and phase of a randomly forced, non-linear oscillator equation that is similar to those
investigated in other combustion instability studies [8,10,11]. Solutions of this model are presented
and shown to be in good agreement with the measured data.
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2. Statistical characteristics of measured pressure data

This section presents typical data illustrating the statistical characteristics of the unsteady
pressure amplitude and phase. These data were obtained from a lean, premixed gas turbine
combustor simulator that is described in detail in Ref. [4]. They were measured with a Model
211B5 Kistler pressure transducer that was sampled at 2000Hz. A typical time series of the
combustor pressure and its Fourier transform during a 204Hz instability are shown in Figs. 1 and
2, respectively. These figures show that the pressure oscillates periodically with a frequency
content that is dominated by the 204Hz mode. Although these pressure oscillations exhibit
significant temporal coherence (as shown by their autocorrelations, see Ref. [4]), they also vary
somewhat from cycle to cycle. These cyclic variations are apparent in the state space evolution of
the pressure, which allows for a comparison of the pressure oscillations over several hundred
cycles. Fig. 3 plots the time dependence of the vector [p0ðtÞDp0ðtÞ=Dt] over 100 cycles of oscillation,
where Dp0ðtÞ ¼ p0ðt þ DtÞ � p0ðtÞ and Dt is the inverse of the sampling frequency. Fig. 3 shows that
the pressure is executing an ‘‘average’’ orbit that differs slightly from one cycle to the next.
Although we do not present it here, an extensive investigation of this variability has shown that it
is uncorrelated from one cycle to the next, suggesting that it is caused by high degree of freedom
processes with short correlation times relative to the acoustic period [4,14].
Our failure to determine a low-dimensional deterministic source to this variability motivated an

analysis of its statistical characteristics. This data analysis was performed using the following

-10

-5

0

5

10

0 0.01 0.02 0.03

Time (s)

Pr
es

su
re

 (
kP

a)

Fig. 1. Typical time series of the combustor pressure during a 204Hz instability ( %f ¼ 0:85; ’m ¼ 16 g=s; %p ¼ 6:68 atm).
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Fig. 2. Fourier transform of the combustor pressure for the operating conditions shown in Fig. 1.
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procedure: (1) determine a ‘‘reference’’ signal, SðtÞ ¼ cosðot þ sÞ; whose angular frequency, o;
was determined from the average value of the frequency of the pressure oscillations, and phase, s;
was chosen to equal that of the data for the first cycle of oscillation, (2) divide the data record and
reference signal into N ensembles, (3) determine the pressure amplitude, An; and phase (with
respect to reference signal), sn; using the Hamming windowed, Fourier transform of the time
series data in each ensemble (where n ¼ 1; 2;y; N), and (4) determine the PDFs of the pressure
Fourier transform amplitude and phase (at the frequency of the reference signal) based upon the
N values of An and sn:
This procedure is most easily applied to a time series composed of harmonic oscillations; i.e., to

pressure data obtained during an instability. However, during stable operation the pressure
oscillates in a somewhat random fashion. Reference to its Fourier transform under these
conditions reveals a broadband background, with small peaks at the natural acoustic frequencies
of the combustor. When analyzing stable combustor pressure data, we determined the amplitude
of the oscillations of these natural acoustic modes in the same manner as described above. We did
not, however, determine any phase information during stable operation because defining a
‘‘reference’’ signal is ambiguous in this situation. It should also be noted that while the above
procedure was outlined for a signal composed of only one harmonic component, it can be readily
generalized to a multi-mode time series as well.
We now present data illustrating the typical statistical characteristics of the 204Hz mode of the

combustor pressure. These data were obtained from time series records of 131,072 data points
that were divided into N ¼ 2048 ensembles (the choice of N is somewhat arbitrary; e.g., we found
that doubling or halving it produced similar results). Typical PDFs of the pressure amplitude
obtained under three different stable operating conditions1 are shown in Fig. 4. These operating
conditions range from ‘‘very stable’’ (far left curve) to near the stability limit (far right curve).
These operating conditions were changed by varying the degree of constriction of a back pressure
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Fig. 3. Phase portrait of the combustor pressure for the operating conditions shown in Fig. 1.

1Determining whether a combustor is ‘‘stable’’ or ‘‘unstable’’ at a particular operating condition is not a trivial

question. Our determination of stability is based upon autocorrelation analysis of the data, as described in Ref. [4]. See

also discussion in the next paragraph of the text.
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valve on the combustor exhaust that, in turn, controlled the mean combustor pressure.2

Examination of Fig. 4 shows that the far left PDF ( %p ¼ 6:58 atm) corresponding to the ‘‘most
stable’’ operating conditions peaks at a low amplitude and remains in a narrow range of values.
This PDF is also asymmetric with a tail that extends toward the higher amplitude values and
resembles a Rayleigh distribution. The PDF of the middle curve ( %p ¼ 6:60 atm), corresponding to
operating conditions that are closer to the combustor’s stability limit, peaks at a slightly larger
amplitude. Note that while these two PDFs peak at different amplitudes, they are qualitatively
similar in shape. However, the %p ¼ 6:60 atm PDF is significantly broader than the lower
amplitude PDF, implying that the oscillations exhibit a wider range of amplitudes as the
combustor moves closer to the stability limit.
Next, consider the PDF obtained at a mean pressure of %p ¼ 6:71 atm whose PDF peaks at the

largest pressure amplitude. These data were obtained very near the combustor’s stability
boundary. In fact, further changes in operating conditions resulted in the combustor becoming
unstable (as evidenced by a sudden jump in amplitude of the pressure oscillations, see also Ref.
[4]). Examination of this PDF reveals that the oscillatory amplitude spans an even broader range
of values than in the two previously discussed, lower amplitude cases. Furthermore, in contrast to
the other two PDFs, it is nearly symmetric about its peak value. Thus, these data show that the
amplitude PDFs become monotonically broader and transition from an asymmetric to a
symmetric distribution as the combustor approaches the stability limit.
We next compare these PDFs with those obtained under unstable operating conditions, see

Fig. 5. These data were obtained by varying the operating conditions in the same manner as
discussed above. Note that there is some overlap in the values of the mean pressures of these data
with those shown in Fig. 4. This overlap reflects the hysteresis in stability boundaries that has been
also noted by other investigators [3,4].
Fig. 5 shows that the shapes of all three PDFs are quite similar, although their mean amplitudes

are different. Specifically, these PDFs are all symmetric and resemble Gaussian-type distributions.
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Fig. 4. Typical probability density functions of the 204Hz mode pressure amplitude during stable operation ( %f ¼ 0:85;
’m ¼ 16 g/s); ~, %p ¼ 6:58 atm; m, 6.60 atm; ’, 6.71 atm.

2Because the reactants mass flow rates were kept constant, changes in the mean combustor pressure caused a change

in the combustor inlet velocity [4]. Such changes in inlet velocity in our combustor strongly influence its stability

characteristics, likely because they affect the convective time between the fuel injection point and the flame, see Ref. [4].
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The only significant difference between the three curves is the narrowing width of the PDFs with
increasing amplitude (since the area under each curve is the same, this decreasing width can be
noted by comparing the peak height of the PDFs). Thus, these data show that the instability
amplitude takes a smaller and smaller range of values as its magnitude increases.
Fig. 6 presents typical PDFs of the phase of the oscillations during unstable operation (recall

that no phase information was determined during stable operation). The figure shows that the
instability phase is nearly uniformly distributed between �p through p radians with respect to the
reference signal. This result shows that the phase of the pressure oscillations drifts and, given
enough cycles, takes all values with a nearly uniform probability. Further analysis of this phase
drift is presented in Ref. [14], showing that it resembles features exhibited by random walk
models, similar to those used to describe other random processes (such as Brownian motion).
These data in Figs. 4–6 illustrate the principle statistical characteristics of the pressure

amplitude and phase. The next section compares these data with the statistical characteristics of a
non-linear oscillator forced by random noise.
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Fig. 5. Typical probability density functions of the 204Hz mode pressure amplitude during unstable operation

( %f ¼ 0:85; ’m ¼ 16 g/s); ~, %p ¼ 6:65 atm; m, 6.68 atm; ’, 6.71 atm.
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Fig. 6. Comparison of the experimental probability density functions of the 204Hz mode of the phase of the combustor

pressure during an instability ( %f ¼ 0:85; ’m ¼ 16 g/s) with Eq. (16); ~, %p ¼ 6:68 atm; ’, 6.71 atm; —, predicted PDF,

Eq. (16).
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3. Theoretical analysis

The analysis in this section is based upon prior studies of Zinn and coworkers [11] and Culick
and coworkers [8,10] who have shown that acoustic oscillations in combustion chambers can be
modelled as the superposition of non-linearly interacting oscillators, where each oscillator
typically represents a natural acoustic mode of the combustor. Accordingly, by retaining the
contributions of the first m modes of oscillation, the pressure at a single point in the combustor
can be written as

p0ðtÞ ¼
Xm

i¼1

ZiðtÞ; ð1Þ

d2ZiðtÞ
dt2

þ o2i ZiðtÞ ¼
ai

oi

dZiðtÞ
dt

þ yiZiðtÞ � #f ZjðtÞ;
dZjðtÞ

dt
;y

� �
; i; j ¼ 1; 2;y; m; ð2Þ

where the function #f describes the non-linearities in the system (specific expressions for #f that are
introduced by gas dynamical or combustion processes are derived in Refs. [10,11]). Consider the
following modified form of Eq. (2) that incorporates the effects of temporal perturbations of the
system parameters and external forcing of the oscillators by ‘‘background noise’’ (e.g., by
turbulent fluctuations) in the combustor:

d2ZiðtÞ
dt2

þ o2i ZiðtÞ ¼
ai þ *aiðtÞ

oi

� �
dZiðtÞ
dt

þ ðyi þ *yiðtÞÞZiðtÞ � ð #f þ *fÞ ZjðtÞ;
dZjðtÞ

dt
;y

� �� �
þ xiðtÞ;

i; j ¼ 1; 2; ym; ð3Þ

where *aiðtÞ; *yiðtÞ; and *f denote parametric disturbances of the instability growth rate, frequency,
and system non-linearities, respectively, and xiðtÞ denotes an external excitation. A similar
equation was previously considered in the context of combustion instabilities by Culick et al. [8] in
an analysis of two combustor modes that were coupled through non-linear gas dynamical
processes.
To reduce the complexity of this system of equations while retaining the important physical

features of the investigated problem we assume that: (1) the unsteady pressure is dominated by the
oscillations of a single mode that interacts non-linearly with itself, (2) the parametric excitation
terms are negligible relative to the additive noise term, (3) the correlation time of the external
excitation is small relative to the other pertinent time scales of the problem and, thus, xðtÞ is
idealized as a random, white noise source, and (4) the terms on the right-hand side of Eq. (3) are
‘‘small’’ (more precise treatments on what it means for these quantities to be ‘‘small’’ are given in
Refs. [8,15]).
Assumption (1) is based upon the results of several experimental and theoretical investigations

of non-linear oscillations in lean, premixed gas turbine combustors [4,6,9].3 Assumption (2) is
based upon prior analysis [15] showing that the dominant characteristics of the pressure PDF are

3It should be noted, however, that this assumption would be inappropriate for analyses of large amplitude

instabilities in other combustion systems, such as rockets or ramjets, where it is known that gas dynamical coupling

between multiple combustor modes plays a key role in the combustor’s dynamics [8,10,11]. In these cases, the analysis of

Culick et al. [8] or the Monte-Carlo simulations of Burnley [12] are more appropriate.
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captured with a model that only retains additive noise terms (it should be emphasized, as noted in
Ref. [15], that these neglected parametric noise terms can introduce changes in the combustor
stability boundary and increased probability of large excursions of the pressure amplitude).
Assumption (3) is based upon autocorrelation analysis of these pressure data (see Ref. [4]).
Finally, assumption (4) is based upon numerous experimental and theoretical results showing that
the limit cycle oscillations in these combustors can, in many cases, be described by a weakly non-
linear theory [4,6,10,11].
With these assumptions, Eqs. (1) and (3) are combined to yield

d2p0ðtÞ
dt2

þ o2p0ðtÞ ¼
a
o
dp0ðtÞ
dt

þ yp0ðtÞ � #f p0ðtÞ;
dp0ðtÞ
dt

� �
þ xðtÞ

¼ � f p0ðtÞ;
dp0ðtÞ
dt

� �
þ xðtÞ: ð4Þ

Eq. (4) is the resulting model non-linear oscillator equation considered in this study. The
objective of the ensuing analysis is to study its statistical characteristics and compare them with
the data in the prior section. The statistical characteristics of this equation has been analyzed
extensively, and so we do not present extensive details of the solution procedure. Such details can
be found in other analyses [8,16–18].
Since the pressure oscillations are nearly harmonic, it is convenient to decompose p0ðtÞ and

dp0ðtÞ=dt as [8,16]

p0ðtÞ ¼ AðtÞ cos ðot þ sðtÞÞ; ð5Þ

dp0ðtÞ=dt ¼ �AðtÞo sinoðt þ sðtÞÞ; ð6Þ

where AðtÞ and sðtÞ denote the fluctuating amplitude and phase of the oscillations. Using Eqs. (5)
and (6), Eq. (4) can be rewritten as the following set of first order differential equations for the
instability amplitude and phase [16]:

dAðtÞ
dt

¼
sinF
o

ðf ðA cosF;�A o sinFÞ � xðtÞÞ; ð7Þ

dsðtÞ
dt

¼
cosF
Ao

ðf ðA cosF;�A o sinFÞ � xðtÞÞ; ð8Þ

where F ¼ ot þ sðtÞ: Assuming that amplitude and phase changes occur over time scales that are
long relative to the acoustic period, these equations can be considerably simplified by time
averaging, see Refs. [8,16,18]. The resulting time averaged, stochastic Ito equations for the
instability amplitude and phase are given by [16]

dA ¼ �
F ðAÞ
o

þ
pSðo; tÞ
2Ao2

� �
dt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSðo; tÞ

p
o

dY1ðtÞ; ð9Þ

ds ¼ �
GðAÞ
Ao

dt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pSðo; tÞ

p
Ao

dY2ðtÞ; ð10Þ
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where Y1ðtÞ and Y2ðtÞ are two independent, unit Wiener processes, Sðo; tÞ is the power spectral
density of the random excitation at time, t; and angular frequency, o; and

F ðAÞ ¼ �
1

2p

Z 2p

0

f ðA cosF;�A o sinFÞ sinF dF; ð11Þ

GðAÞ ¼ �
1

2p

Z 2p

0

f ðA cosF;�A o sinFÞ cosF dF; ð12Þ

The temporal evolution of the statistical characteristics of AðtÞ and sðtÞ are described by the
transition density function, PðA; s; tjA1; s1; t1Þ; which is obtained from the Fokker–Planck
Eq. [16]. Examination of Eq. (9) shows that the amplitude is decoupled from the phase, implying
that AðtÞ is a one-dimensional Markov process. It can be shown that its transition density
function, PAðtÞ ¼ PðA; tjA; t1Þ; is given by the following Fokker–Planck equation [16]:

@PA

@t
¼

@

@A

F ðAÞ
o

�
pSðo; tÞ
2Ao2

� �
PA

� �
þ

pSðo; tÞ
2o2

@2PA

@A2
: ð13Þ

Similarly, the Fokker–Planck equation of the joint Markov process (A; s), described by Eq. (10),
is given by

@Ps

@t
¼

@

@A

F ðAÞ
o

�
pSðo; tÞ
2Ao2

� �
Ps

� �
þ

GðAÞ
Ao

@Ps

@s
þ

pSðo; tÞ
2o2

@2Ps

@A2
þ
1

A2

@2Ps

@s2

� �
; ð14Þ

where PsðtÞ ¼ PðA; s; tjA1; s1; t1Þ:No general solutions of Eqs. (13) and (14) are known except in
cases where Ps and PA are stationary (i.e., independent of time). For the stationary case, the
solutions for the PDFs of A and s; W ðAÞ and W ðsÞ , are

W ðAÞ ¼ CAe
�ð2o=ðpSðoÞÞÞ

R A

0
F ðcÞ dc; ð15Þ

W ðsÞ ¼ 1=2p; ð16Þ

where C is a normalizing constant.
Note that no additional assumptions about the function f ; other than the above assumption (4),

were made to obtain Eqs. (15) and (16). Eqs. (11) and (15) show that the amplitude PDF, W ðAÞ;
depends upon the system non-linearities and instability growth rate through the function FðAÞ:
Significantly, Eq. (16) shows that the phase PDF, W ðsÞ; is uniform; i.e., there is equal probability
that sðtÞ will equal any value, 2posop: This result is true regardless of the system parameters
and nonlinearities.
In order to complete the analytical description of W ðAÞ in Eq. (15), it is necessary to derive an

expression for the function F(A). This can be accomplished in a general fashion by expanding the
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function f ðp0; dp0=dtÞ (see Eq. (4)) in the following Taylor series:

f ðp0; dp0=dtÞ ¼ � yp0 �
a
o
dp0

dt
þ b20p

02 þ
b02

o2
dp0

dt

� �2
þ

b11

o
p0dp0

dt
þ b30p

03 þ
b21

o
p02
dp0

dt

þ
b12

o2
p0 dp0

dt

� �2
þ

b03

o3
ð
dp0

dt
Þ3 þ b40p

04 þ
b31

o
p03dp0

dt
þ

b22

o2
p02 dp0

dt

� �2

þ
b13

o3
p0 dp0

dt

� �3
þ

b04

o4
dp0

dt

� �4
; ð17Þ

where the bij’s are constants. Although f ðp0; dp0=dtÞ is truncated at fourth order in Eq. (17), it can
be expanded to an arbitrary order in a straightforward manner. Substituting Eq. (17) into Eq. (11)
yields

F ðAÞ ¼ �
aA

2
þ

3b03 þ b21

8

� �
A3 þ? ¼ �

aA

2
þ k2A3 þ?; ð18Þ

where k2 ¼ ð3b03 þ b21Þ=8:
4 Eq. (18) shows that only three out of the 14 terms in Eq. (17)

contribute to F ðAÞ: Furthermore, two out of the three non-linearities combine into a single cubic
term. Inserting Eq. (18) into Eq. (15) yields the final result for the PDF of the mode’s amplitude,

W ðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k2o=ðp2SðoÞÞ

p
e�a2o=ð8pk2SðoÞÞ

1þ erf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2o=ð8pk2SðoÞÞ

p AeoA2ða�k2A2Þ=ð2pSðoÞÞ: ð19Þ

Eq. (19) shows that the amplitude PDF depends upon the combustors linear and non-linear
characteristics through the parameters a and k2; and the background noise characteristics through
the power spectral density of the noise, SðoÞ: Although W ðAÞ exhibits a quantitative dependence
upon five parameters, we will next show that its qualitative characteristics can be reduced to its
dependence upon a single parameter. This is accomplished by introducing the dimensionless
amplitude *A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ok2=ð2pSðoÞÞ4

p
A and substituting it into Eq. (19):

W ð *AÞ ¼
4ffiffiffi
p

p e�O2=4

1þ erfðO=2Þ
*Ae

*A2ðO� *A2Þ; ð20Þ

where

O ¼
a
jkj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o

2pSðoÞ

r
: ð21Þ

Equation (20) shows that the normalized amplitude PDF, W ð *AÞ; depends upon the single
parameter, O: Note that O is negative and positive when the combustor is linearly stable (ao0)
and unstable (a > 0), respectively, see Eq. (21). Figs. 7 and 8 plot the dependence of W( *A) upon *A

for several values of O that correspond to stable and unstable operating conditions, respectively
(thus, describing the variations of the amplitude PDF as the combustor transitions from stable to
unstable operation).

4Since the coefficient ð3b03 þ b21Þ=8 that multiplies the A3 term in Eq. (18) must be positive in order for W ðAÞ to have
physical meaning, we express this coefficient as k2: If this coefficient is not positive, then truncating the Taylor series
expansion of f ðp0; dp0=dtÞ to fourth order as done in Eq. (17) is inappropriate and higher order terms must be retained.
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Comparison of the results in Figs. 7 and 8 with the measurements in Figs. 4 and 5 shows a good
agreement between the predicted and measured amplitude PDFs. Specifically, the experimental
and predicted PDFs exhibit similar transitions from asymmetric to symmetric profiles as the
combustor moves from stable to unstable operation. They also show the transition from a
narrowly distributed PDF under stable conditions, the broadening of the PDF as the stability
limit is approached, and the narrowing of the PDF with increasing instability amplitude.
Since the actual values of the parameter O for the experimental data are unknown, the above

amplitude PDF comparisons are only qualitative. Quantitative comparisons between the
predicted and measured phase PDFs are possible, however, because of the simplicity of the
predicted PDF of W ðsÞ; see Fig. 6. Fig. 6 shows that the measured and predicted (see Eq. (16))
phase PDFs are also in good agreement. This good agreement between the measured and
predicted statistical characteristics of the instability amplitude and phase suggests that the studied
model equation (4) captures many of the random features of the cycle-to-cycle variations of the
pressure oscillations. This qualitative agreement also supports the conjectures of several prior
studies [4,6,9], which suggested that unstable gas turbine combustor dynamics can be described by
a single oscillator that interacts non-linearly with itself.
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In closing, we briefly summarize the effects of background noise upon the characteristics of self-
excited, combustion-driven oscillations. First, as shown explicitly above, background noise causes
the instability phase to drift and, given enough cycles, to achieve uniform probability of having all
values. A second effect that is predicted by the model is a reduction in the mean instability
amplitude. Such a change in the mean characteristics of non-linear systems by background noise is
well known [19], and in this case is due to non-linear interactions between the coherent, self-
excited oscillations and the random oscillations. The predicted dependence of the mean instability
amplitude, normalized by its value in the absence of noise, upon the noise levels is plotted in
Fig. 9. The mean amplitude was calculated using the expression

/AS ¼
Z

N

0

AW ðAÞ dA; ð22Þ

where W ðAÞ is given by Eq. (19). As shown in the figure, the instability amplitude decreases
slightly as the parameter 4pk2SðoÞ=oa2 increases, but the effect is not large and amounts to a
reduction of only a few percent. Although not shown here, the predicted mean amplitude actually
begins to increase for larger background noise levels. We do not show these results because the
perturbation theory used in this analysis is valid for small noise levels, and may not be valid at
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these higher levels. Nonetheless, they do suggest that background noise may have very significant
effects upon the instability characteristics for larger values of 4pk2SðoÞ=oa2; such as when the
combustor is only weakly unstable; i.e., aB0:
Because of the difficulty in imposing different background noise levels upon the system during

tests, we do not have direct experimental verification of this dependence of instability amplitude
upon background noise levels. However, we have obtained related data in tests where coherent
oscillations were externally driven at frequencies close to the instability frequency [20], see Fig. 10.
These tests were performed for a different combustor configuration where the instability
frequency was 167Hz. Harmonic oscillations of varying amplitude were driven at a frequency of
157Hz. In such a case, non-linear oscillations theory predicts that the amplitude of the self-excited
oscillations decreases with increasing amplitude of driven oscillations; this phenomenon is known
as entrainment or frequency locking [18]. As shown in the figure, the instability amplitude
progressively decreases with increasing drive amplitude, in agreement with the theory in Ref. [18].
Although this phenomenon is not directly related to the studied phenomenon of noise effects upon
instability amplitude, they have similarities in their demonstration that non-linear interactions
between self-excited oscillations and driven oscillations affect the instability characteristics.

4. Final comments

The results of this paper have several implications on current understanding and active control
of combustion instabilities. First, they emphasize the inherently stochastic features of combustor
pressure oscillations. Although the presence of such stochastic characteristics implies that there
will always exist some lack of repeatability from one cycle or test to the next, it also shows that a
statistical characterization of such variability may yield further insight into the characteristics of
the system. For example, the agreement between the model and data lends indirect support to
prior conjectures that unstable gas turbine combustor dynamics can be described by a single
oscillator that interacts non-linearly with itself [4,6,9].
Next, the good agreement between the measured and predicted statistical characteristics of the

instability amplitude and phase suggests that the studied model equation (4) captures many of the
random features of the cycle-to-cycle variations of the pressure oscillations. This agreement
suggests that the analysis presented in this paper provides a useful framework for interpreting
other random features of combustor stability characteristics; e.g., cyclic variability (addressed in
this paper), ‘‘fuzziness’’ in stability boundaries, or noise induced transitions [4].
Finally, these results serve as reminders that active control systems (ACS) must account for the

inherent noise in the system and its affect upon the oscillations. For example, the data in Fig. 6
implies that the instability phase continuously drifts (on the order of a degree every two cycles
[14]). Thus, in order for the ACS to be effective, the time scales associated with its observation,
analysis, and actuation must be small relative to the time scales of the phase drift.
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Appendix A. Nomenclature

A amplitude of oscillation
b Taylor series coefficients, see Eq. (17)
f oscillator forcing function, see Eq. (4)
F time-averaged oscillator forcing function, see Eq. (11)
’m mass flow rate

N number of ensembles data record is divided into
p0 unsteady pressure

%p mean pressure
S power spectral density
W probability density function
Y Wiener process

Greek letters
a instability growth rate, see Eq. (2)
f equivalence ratio
y frequency shift, see Eq. (2)
s phase of oscillations
o angular frequency
O amplitude PDF parameter, see Eq. (21)
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